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This paper introduces a novel computational method for esti-
mating relaxation rates among pairs of spin orders. This method
simultaneously estimates all the auto- and cross-relaxation rates
from the same measurements, and avoids the ill-conditioning prob-
lems associated with multiexponential fits. The method models
the relaxation dynamics by a system of linear differential equa-
tions, and assumes that measurements of the spin orders have been
made at an equally spaced sequence of time points. It computes a
nonlinear least-squares fit of the exponential of the rate matrix at
the shortest time point to these measurements. Preliminary esti-
mates of the exponential matrix and initial spin orders from which
to start the computations are obtained by solving simpler linear-
least-squares problems. The performance of the method on simu-
lated 2 X 2 test problems indicates that when measurements at
eight or more equally spaced times spanning the maximum and
inflection points of the build-up curves are available, the relative
errors in the rates are usually less than the relative errors in the
measurements. The method is further demonstrated by applying
it to the problem of determining the cross correlation-induced
cross-relaxation rates between the in-phase and antiphase coher-
ence of the amide groups in the >N-labeled protein oxidized fla-
vodoxin. Finally, the possibility of extending the method to other
kinds of relaxation measurements and larger spin systems is dis-

cussed.  © 1997 Academic Press

INTRODUCTION

Relaxation rates contain important information on molec-
ular conformation and dynamics (1). In our laboratory, con-
siderable attention has been given to the determination of
the auto- and cross-relaxation rates among the various spin
orders in the amide groups of proteins, since these enable
one to ‘‘map’’ their spectral-density functions directly (2).
While well-established methods of determining the auto-
relaxation rates are available, the determination of the (usu-
ally much smaller) cross-relaxation ratesis often experimen-
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taly and computationally challenging. Cross relaxation in-
duced by cross correlation between the dipole—dipole inter-
action and chemical-shift anisotropy in the amide groups of
proteinsis acase of particular interest, since the correspond-
ing cross-relaxation rates can potentially yield additional
data for use in spectral-density mapping, but these effects
have proven difficult to measure accurately in macromole-
cules (3-7).

The most common procedure for estimating cross-relax-
ation rates starts by suppressing the coherence-transfer path-
ways responsible for the cross relaxation, in order to deter-
mine the auto-relaxation rates from monoexponentia fits.
Then the eigenvalues of the relaxation matrix are estimated
from multiexponential fits without suppression of the cross
relaxation and used, together with the auto-relaxation rates,
to derive the cross-relaxation rates. Unfortunately, direct fits
to multiple decaying exponentials is a notorioudly ill-condi-
tioned problem (8). This means that the noise and other
errors present in the integrated cross-peak intensities produce
even larger errors in the estimated relaxation rates, because
the intensities do not change significantly over large but
compensating changes in the rates. This difficulty, it should
be noted, is entirely distinct from the multiple-minimum
problem, and often occurs even in linear-least-squares prob-
lems (9). An example that arises in the interpretation of
NMR data may be found in Ref. (10).

In this paper, we describe a simpler and more direct
method for estimating cross-relaxation rates that both avoids
the need to determine the auto-rel axation rates independently
and at the same time avoids the problems associated with
multiexponential fits. This approach is developed and evalu-
ated in the specia case of a 2 X 2 symmetric relaxation
matrix, but it should be possible to extend it to larger spin
systems. Themain ideaisto directly estimate the exponential
of the relaxation matrix by fitting the build-up and decay
measurements at a sequence of time points. Providing that
these time points are equally spaced, the properties of the
matrix exponential and its derivatives (11) enable usto solve
this inverse problem using standard linear- and nonlinear-
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least-squares procedures. In the case of a 2 X 2 matrix
exponential, we have also derived an analytic formula for
the relaxation rates.

Our results with simulated data indicate that, providing
measurements at eight or more well-placed time points are
available, therelative errorsin the estimated rates are usually
less than the relative errors in the individual measurements.
The method is further illustrated by an application to the
determination of the rate of conversion of antiphase to in-
phase coherence in the amide groups of the **N-labeled pro-
tein, oxidized flavodoxin, which is due to chemical-shift
anisotropy/dipole—dipole cross correlation. Finaly, the po-
tential of the method as a general means of estimating rel ax-
ation matrices is discussed.

THEORY

Therelaxation among apair of spin ordersthat areisolated
from all other spin orders in the molecule is governed by a

exp(tR) = e“e's

2 X 2 symmetric system of ordinary linear differential equa-
tions with constant coefficients (2), i.e,,

dg da/dt Pa O a(t)
dt [db/dt} [ o pb] [b(t)}
We have labeled the two components of the spin-order
vectorg =q(t)as‘‘a’’ and‘‘b’’, and adsorbed the usual
minus signs into the rates. Thus the rates p, and p, are
negative, and the condition o2 < p.p, implies that the
relaxation matrix R itself is stable (i.e., that its eigenval-
ues are negative). In the following, we shall refer to p,
and p, as the auto-relaxation and o as the cross-relax-
ation rates. Equation [1], of course, is applicable to many
different relaxation processes, regardless of the mecha-
nism of relaxation.

The formal solution to Eq. [1] is given by

R-q. [1]

[2]

where the exponential of the matrix tR may be defined by
its Taylor seriesexp(tR) = | + tR + (tR)?/2! + - - - and
q(0) is theinitial spin-order vector. Since the powers of a
symmetric matrix are symmetric, exp(tR) inherits the sym-

a(t) = exp(tR)- q(0),
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metry of R. In order to obtain the 2 X 2 matrix exponential
in closed form, we define

[3]

where @ = tr(R)/2 is haf the trace and 6 = (pa — pb)/2.
Since the identity matrix | commutes with any matrix, the
exponential factorizes as exp(tR) = exp(ta)exp(tS).
Moreover, the characteritic equation for S is S? = g4,
where

B? =67+ 0% = —det(S). [4]

Collecting even and odd terms in the Taylor series for
exp(tS) thus yields an analytic formula for the exponential
of the relaxation matrix

e™(I cosh(tB) + S sinh(tB)/3)

_ e cosh(tg) + 6 sinh(t3)/3
B [ o snh(t8)/

o snh(18)/

e ) g
cosh(tB) — 6 sinh(tB)/5

In the following, we shall denote the functions of time ob-
tained by suppressing the dependence of the exponential on
the relaxation matrix R by F(t) = [f;(t)] = exp(tR).

The relaxation matrix R can be obtained from the matrix
exponential F = [ f;] at afixed point t in time as follows.
First, we use Eg. [ 5] to evaluate the two ratios

fiu — T . é
§ = ot o [6]
and
_ 2t _o _ tanh(tovl + €%)
n_fn""fzz_ﬁtanh(tﬁ) - V1 + €2 - 17

On inverting Eq. [ 7] and rearranging, we obtain the cross-
relaxation rate as

> = arctanh(nV/1 + £2)

1 + ¢2

(8l

Next, we use Eq. [6] to compute 6 = £o, and then obtain
a from the Jacobi identity (12), i.e.,
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_tr(R) _log[det(F)]
T T T

[9]

Finally, the auto-relaxation rates are obtained from

pa=a+ 6 and pp=a —54. [10]
This ‘‘eigen-free’”’ approach avoids computing the matrix
logarithm; it does, however, contain two scalar logarithms,
one in Eq. [9] and the other hidden in the arctanh of Eq.
[8]. Thus, these formulae will be numerically unstable only
if det(F) < eor [l + &% > 1 — ¢ for some e > 0 of
order of the machine precision.

We now state some of the most important properties of
the solution to Eg. [1], which have proved useful in the
design and qualitative analysis of the experiments. Proofs
may be obtained from the analysis of Egs. [4] and [5]:

1. Theauto-relaxation functionsf, (t) and fx(t) are posi-
tive, bounded by one, convex, and strictly decreasing with
time.

2. The cross-relaxation function fy,(t) satisfies of;,(t) =
Oaswell as |fo(t)] < fi (1) if 6 = 0, or |f(t)] < fou(t)
if 6 < 0.

3. The cross-relaxation function has a unique extremum
a time 7o, = arctanh(—g£/a)/B, and a unigue inflection
point at 27q.

4. At this extremum, we have f11 (Teq)/ f2o(Ted) = pal pb
aswell asfio(7eq) < o/2.

We now outline our procedure for estimating the relax-
ation matrix, which uses measurements of the spin-order
vector g(t) at a sequence of equally spaced time points, and
assumes that the relaxation rates are independent variables.
The procedure itself consists of the following three steps. In
the first step, a preliminary estimate of the initial spin order
(if it cannot be measured directly), together with the expo-
nential at the shortest time point, is obtained from two differ-
ent linear-least-squaresfits. In the second step, these prelimi-
nary estimates are used as the starting values for anonlinear-
least-squares fit, which more accurately models the relax-
ation dynamics including the initial condition; because such
nonlinear fits are prone to being trapped in loca minima,
the preliminary estimates are nevertheless essential if agood
fit is to be found reliably. In the final step, the relaxation
matrix is calculated from the estimated exponential, using
the inversion procedure given in Egs. [6] through [10]
above.

LINEAR ESTIMATES

Consider first the problem of estimating the initial spin-
order vector q(0). Letty, ..., ty bethetime points at which
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the inexact measurements q,,, of the exact solution q(t,,) are
taken, where t,, = h-m for some fixed h > O and m = 1,
..., M. We shal use the fact that the exponential of a
symmetric matrix is symmetric, together with the well-
known addition formula, exp(sR)-exp(tR) = exp[(s +
t)R], to derive a new relation between the initial spin-order
vector and the spin-order vectors at three time points t,, t,,
andt, ., =ty +tywithl<m,n<m+ n=< M, namely

q(O)T “q(tmin) = q(tm)T “q(t). [11]

The proof goes as follows:

q(tm)" - a(tn) = [exp(tnR)- q(0)]17 - [exp(t,R) - q(0)]
= q(0)" - exp(t-R) - exp(t.R) - q(0)
=q(0)" -exp[(tm + t,)R] - q(0)

= q(O)T *q(tnin)- [12]
If one component of the initial spin-order vector q(0) =
[a(0), b(0)]" is known to be zero, eg., a(0) = 0, this
relation is sufficient to determine the other component b(0)
=[a(tn)a(t,) + b(t,)b(t,)]/b(tmn) . We mention that for-
mula [11] is valid for an arbitrary sequence of time points
t;, ..., ty aslong as each t, is of the form t, = t,, + t, with
1 < m n < k < M. Hence any arithmetic, geometric, or
even Fibonacci sequence can be used.

Formula [11] gives us a means of estimating the initial
condition of a solution to asymmetric system of linear differ-
ential equations. Thus, given approximate measurements g,

., m Of the spin-order vectorsq(t;), ..., q(tw), we seek
an estimate q, of the initial condition q(0) by satisfying all
instances of Eq. [11] as closely as possible, in the least-
squares sense. This leads to the following two-variable lin-
ear-least-squares problem in the unknown initial spin order
u:

®(Go) = min [(u)]

M/20 M—m

min ( ¥ > ldmen-u = dm-qdl®). [13]

m=1 n=m

On setting the gradient of ¢ to zero, we obtain the normal
eguations for this problem, namely A-u = b, where

POV @fin @minbmin

A 33 [ ]
m=1 n=m +nMm+n m+n

b — E’“Z’ZD Mg“ [(aman + bmbn)amm] [14]
m=1 n=m (aman + bmbn)bm+n .
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In the event that one component of the initial spin order is
known to be zero, this becomes a univariate linear-least-
squares problem whose solution is obtained from a single
row of the equation A-u = b.
We now turn to the problem of obtaining a preliminary
estimate F, of the matrix exponential at time h. Since
q(tms1) = F(h)-q(tn) (I=sm<M-1) [15]
by Eq. [2], it makes sense to try to satisfy these relations

as closely as possible, once again in the least-squares sense.
This leads to another linear-least-squares problem, namely

U(Fy)

min [W(V)]

M-1

min (3 V- dn - Amall?),

m=1

[16]

where the minimum is now taken over all 2 X 2 symmetric
matrices V.

The normal equations for this problem are obtained by
setting the gradient of ¥ with respect to the three indepen-
dent elements of V = [v;] to zero. Letting v = [vq1, v1p,
v] T, these equations are written in matrix formas C - v =
d, where

M-1 [ aﬁ, ambm 0
C = a.b, a3+ b2 a.b,
m=1 | 0 ambm b2m

[17]

3
Il
[N

mo [ Anm+1
d= ambm+l + am+1bm .
bmberl

Using the Cauchy—Schwarz inequality, it is easy to show
that the determinant of this matrix vanishes only if a,, = <b,
for some constant ¢ and all 1 < m < M — 1. Hence the 3
X 3 matrix C (as well asthe 2 X 2 matrix A in Eq. [14])
iswell conditioned unless the initial spin-order vector q(0)
is near the nonnegative eigenvector r of R. Since F(t) =
exp(tR) has the same eigenvectors as R, this means that
F(t)- q(0) = «(t)r for some scalar function k and al t =
0, so that the measurements q,,, are nearly linearly dependent.
Fortunately, in most experiments, we have a(0) = 0 or b(0)
= 0, so this can happen only if the cross-relaxation rate o
issmall compared to \/@ (in which case the build-up curve
will probably be below the noise level). This can be ascer-
tained from the data by means of Properties 3 and 4 in the
previous section.

It may be observed that if a sequence of time points is
given by t,, = to + mh, for somet,, h > 0 and integer 1 <
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m < M, then shifting al the times by t, affects only the
initial condition, but not the derived rate matrix. Therefore,
al of the above formulae for the matrix Fy, (as in Eq. [16])
may be used unchanged. More generally, it is not difficult
to extend these formul ae to the case in which the time points
are distributed as k;h, k:h, . . ., kh for an arbitrary increas-
ing sequence of integersk; < k, < -+ - < K.

NONLINEAR ESTIMATES
Once these preliminary estimates of the initial spin-order

vector (o and the matrix F,, have been obtained, they should
be refined by means of the nonlinear-least-squares fit

(0o, Fn) = min [Q(u, V)]

M
min (3 V™ u — gul®)

uVv

(18]

m=1

to obtain the final estimates qq, F.

The least-squares fit in Eqg. [18] tends to produce better
resultsthan that in Eq. [16] because it treats theinitial condi-
tion as an unknown, and computes the entire time sequence
from it together with the current estimate of the exponential
matrix. Equation [16], in contrast, predicts the measure-
ments at each time point from those at the preceding time
point only, and is therefore more strongly affected by *‘ outli-
ers.”’ Although the function 2 in Eq. [18] may have numer-
ous local minima, the preliminary estimates obtained from
the previous step are already fairly good as arule, and hence
convergence to a satisfactory solution is almost always ob-
tained. We should also point out that this least-squares fit is
quite different from Prony’s method, a classical method that
has been used to interpolate and fit data points by a linear
combination of scalar exponentials.

In thiswork, we have usually used a BFGS quasi-Newton
method with a cubic line search to get close to a minimum
of Q, followed by a few iterations of Newton's method
to attain machine precision. In some of our simulated test
problems using small amounts of data containing very large
errors, this procedure failed to converge. In such cases con-
vergence can be obtained by varying the preliminary values
of theinitial spin orders and rates within a small range about
the values as calculated above. Since divergence was seldom
encountered with the experimental data (see below), we
omit the details of this procedure.

Like most reasonably efficient nonlinear optimization
methods, this procedure requires the first and second deriva-
tives of the function Q with respect to the variables u, V.
If welet z, = V" u — g, the gradient can be written as
VQ =230, (V2Zn)" (Zn — Qm), Where Vz,, denotes the
5 X 2 Jacobian matrix of the vector-valued function z,, =
Zn(u, V). The partials with respect to the initial spin-order
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variables u can be expressed either as a recurrence relation
or in closed form:

%_v.aZ_’M: :Vm.@

ou ou ou

= V" [19]

A recurrence relation for the partials with respect to the
variables v; is aso straightforward, namely

=V + Ei+zn l<si<j=<?2), [20
Ovij vy e (L=T=j=2), [20]
where
£ 10 £ _ 0 1
11 — O O [ 12 — 1 O ]
00
E,, = 21
. [0 1] [21]

Working backward from the zeroth term in this recursion
yields the closed formula

92 _ (5 gy vz = XV 5 o)
vy 5 J
where z, = u (1 < i < j < 2). The last equdlity in this
equation recapitulates a well-known formula for the deriva
tive of V™in the matrix direction E;; (11). In practice, how-
ever, the recurrence formula in Eq. [20] is easier to use,
sincethe derivatives of all thepowers 1, ..., M arerequired.
The elements of the Hessian V() are similarly obtained
from the following recurrence relations:

0%Zy 02  0Zma

O 8Uj ' 6vij(‘3uk ! OUy

%2, 0Zn_1 0%Zm_1 0Zm_1
T _ . + V- + Eq- 23
61)”’ 8vk| ! 6‘vk| a‘Uij avk| K a‘Uij [ ]

(l<i,k=j,| =< 2). Wenote in passing that al these
formulae can be extended to the case of arbitrary N-dimen-
sional vectors u, g., and matrices V, including nonsymmet-
ric matrices. In addition, it is not difficult to extend them to
any sequence of time points that are integer multiples of the
shortest time point, just as for our linear fits.

Finaly, we compute the relaxation matrix R from the
refined estimate F,, of the exponential at timet; = h, exactly
as described under Theory. Although this calculation can
fail if the determinant det(F,) < e or the corresponding
value of [Vl + ¢?| > 1 — € in Eq. [8] for some small ¢
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of order of the machine precision, this has seldom happened
in any of our simulations using physically reasonable relax-
ation matrices and error levels; it aso did not occur in our
applications to experimental data (see below). Should this
problem be encountered in the sorts of applications described
here, the data should be checked for serious systematic er-
rors.

In the ssimulations described below, as well as with the
experimental data described in the next section, we have
smoothed the data using a simple three-point digital filter,
i.e,

0. = (20: + 92)/3
On = (Qm-1 + 20m + Qms+1)/4 (M=2,...,M - 1)
Ov = (Qu-1 + 2qum)/3. [24]

It is also beneficial to equalize the contributions of the a and
b components of the residual vector to thefit by replacing the
norms in Egs. [16] and [18] with

HQm - qm||2 - (am - a;'n)z(l - Wm)

+ (bm — B) Wi, [25]

where ¢, = V- q.,_, for Eq. [16], O, = V™ u for Eq. [18],
and the weights are given by

Wi = [8n|/(|8m] + [Dnl). [26]

The modifications of the normal equations and derivatives

required to do this are straightforward. Other choices of

weights, perhaps depending on m, could shift the errors from

the estimated cross-rel axation rate to the less important auto-

relaxation rates, but this would require a detailed knowledge
of the actual error distribution in the experimental data.

RESULTS OF SIMULATIONS

The above procedures were implemented in the Matlab
numerical linear algebra system, usingthe © < fminu’ ’ rou-
tine from the optimization toolbox for the BFGS minimiza-
tion. The amount of CPU required, as measured by the Mat-
lab © “flops’’ routine, was typicaly about 25,000 X M
floating-point operations for each fit.

The test problems were all generated using a single relax-
ation matrix, which was chosen to be similar to those that
were expected in the experiments we have performed (see
below), namely

[27]
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A time step of approximately h = 37./M = 0.1877/M was
chosen, which places roughly one-third of the points before
the maximum of the build-up curve, one-third between the
maximum and the inflection point, and one-third after the
inflection point (see Property 3 under Theory). An initia
spin order go = [ag, o] T with ag = 0 and by € (1, 2) was
used, and the build-up and decay curves were computed by
multiplying go by the exponential exp(hR) a total of M
times, where the number of time points M was 4, 8, or 16.
The data were then generated by adding errorsto the curves,
according to the formula

Om = (1 + erm)'[exp(mhR). qO]

— |:(l + EI’1m)am:| , [28]
(1 + erom) b,

wherer ,, = [, m] " iSarandom vector whose two compo-

nents were uniformly distributed in the interval [—1, 1],

and the bold dot signifies element-by-element multiplication.

The (relative) ‘‘error levels’ ¢ used in our simulations were

0.1, 0.25, and 0.5.

Thiserror model isclearly rather drastic, since the r andom
errorsin actual experimental data are likely to be more addi-
tive than multiplicative, and their distribution, even if not
Gaussian, will at least tend to fall off with increasing size.
Measurements of cross-peak intensities, however, are often
afflicted by outliers and systematic deviations, whose ex-
pected magnitudes can at best be bounded from above. With-
out knowing how these sorts of errors are distributed, it is
pointless to attempt to determine the resulting probability
distribution in the results. The above error model does at
least enabl e us to obtain worst-case bounds on the magnitude
of the relative errors that can be expected in the results,
given the bounds on the relative errors e in the data. Thisis
the standard method of quantifying the sensitivity of a func-
tion to perturbations.

For each of the nine possible combinations of these three
values each of M and ¢, we generated a total of 100 test
problems and ran our fitting procedures on each. Therelative
error matrix was calculated from the resulting relaxation

matrices as
—o)lo }
—p)lpy |’

and the minimum, maximum, and RMS (root-mean-square)
valuesfor each of the threeindependent entriesin this matrix
were computed over al the runs which converged. The re-
sults obtained by fitting the weighted and smoothed data are
summarized in Table 1.

It will be observed that, providing eight or more time

(O,calc

calc

29
o) (pS 129]

[(pi”“ — P/ px

(o,calc _
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pointswere used, therelative errors in the cross-rel axation
rate o were comparable to the relative errors in the mea-
surements, on the average. It will also be observed that
the errors in the auto-relaxation rate p, were considerably
larger than the errorsin o, whereas the errors in the other
auto-relaxation rate p, were considerably smaller. Thisis
consistent with the fact that the initial condition had a; =
0, so that all knowledge of p, was derived from the rela-
tively weak build-up curve. Finally, it can be seen from
the differences in the minimum and maximum relative
errors that some of the estimates, most notably those ob-
tained from only four time points, were extremely biased.
In particular, p, and o were systematically too high,
whereas py, was systematically too low.

By further refining the values obtained from fitting the
smoothed data against the unsmoothed data (Table 2), these
biases were found to be primarily due to the smoothing
procedure. The RMS relative errors in the rates also tended
to be less when fitting the unsmoothed data. In this regard,
it should further be observed that the fits of the calculated
curves to the smoothed data (‘‘calcd to data’’ in Table 1)
were generaly better than the corresponding fits to the un-
smoothed data (‘‘calcd to data’ in Table 2); i.e, the
smoothed data can generally be fit more closely than the
unsmoothed. The fits of the calculated curves to the curves
obtained from the exact relaxation matrix in Eq. [27]
(‘‘calcd to exact’” in Table 1) were generaly nevertheless
worse than the corresponding fits to the smoothed data
(*‘caled to data’ in Table 1), whereas the opposite was
observed with the fits to the unsmoothed data (Table 2).
These observations are another symptom of the bias intro-
duced by smoothing. For comparison, the fits of the data to
the exact curves (‘‘data to exact’’ in the tables) are also
given.

Unfortunately, the fits to the unsmoothed data were aso
numerically more difficult to compute, and Newton' s method
more frequently diverged when the number of time points
was small and the error level high. Direct fitting of the
unsmoothed data, without first fitting the smoothed data,
diverged even more often. Fortunately, by first fitting the
smoothed data, the convergence rate obtained with reason-
ably good unsmoothed data at eight or more time points
remained acceptable. Therefore, until aless biased smooth-
ing strategy can be developed, thisfinal optimization against
the unsmoothed data is strongly recommended. Figure 1
shows plots of the perturbed data, the smoothed data, the
final fit to the unsmoothed data, and the exact solution, for
a typical problem with eight time points and a 25% error
level.

In summary, our simulations indicate that whenever data
at eight or more time points are available and the true 2 x
2 relaxation matrix is similar to that shown in Eq. [27], our
method of fitting the build-up and decay curves will usually



378

NAJFELD ET AL.

TABLE 1
Results of Simulated Test Problems (Smoothed)?

4 8 16
Time points:
Error level: 10% 25% 50% 10% 25% 50% 10% 25% 50%
Weighted sum of squares

Mean (x107%)
Calcd to data 1.67 2.46 5.38 3.68 8.35 24.1 4.39 10.5 258
Calcd to exact 6.96 16.1 49.2 3.90 11.7 45.7 2.99 10.3 31.6
Data to exact 8.66 185 55.1 7.67 20.3 70.8 747 21.2 57.7

pa in-phase decay rates

% Error
RMS 65.0 109.4 174.5 14.3 24.5 62.0 7.8 16.9 34.6
Minimum 4.2 -63.9 —184.3 -125 —41.7 -99.0 -32 -18.7 —-36.8
Maximum 1234 313.3 948.4 36.6 70.2 198.0 17.6 45.6 1225

pp antiphase decay rates

% Error
RMS 18.9 20.6 318 6.7 9.5 14.6 4.6 6.1 8.4
Minimum -30.1 —47.3 -87.1 -12.0 —-20.9 -323 -87 -14.8 —-20.3
Maximum 0.0 13.3 51.9 0.0 14.1 34.3 12 59 195

o cross-relation rates

% Error
RMS 29.5 49.1 82.8 11.4 19.2 45.7 7.5 18.0 35.8
Minimum 0.2 -322 —60.9 -9.8 -214 -55.1 -82 -184 -385
Maximum 65.7 154.3 413.0 313 59.3 1711 18.8 535 126.8

Optimizer convergence rate

% Success

Out of 100 100 100 92 100 100 98 100 100 99

@ Thefirst row, labeled ** Time points,”’ contains the numbers of time points M that were used. The second, labeled ‘' Error level,”” contains the values
of e that were used to perturb the smulated data, as in Eq. [28]. The first set of rows, labeled ‘‘Weighted sum of squares,’’ contains the values of the
fits, weighted in accord with Eq. [26], between the perturbed smoothed data (data), the exact solution simulated from the relaxation matrix in Eq. [27]
(exact), and the solution calculated from the fitted rates and initial spin orders (calcd). The following three sets of rows contain the root-mean-square
average of the relative errors in each of the rates py, py, and o, computed according to Eq. [29] (RMS), aong with the minimum and maximum relative
errors over al converging runs. The last row of the table contains the number of runs which converged out of the total 100 random perturbations.

produce rates whose relative errors are less than the largest
relative errors in the data. This shows that the problem of
estimating the rates, as formulated in this paper, is not ill
conditioned. There is, of course, always a chance that all of
the errors in the data are either positive or negative, and in
this case a strong deviation of the estimated rates from the
exact rates is simply inevitable. This is, in fact, the reason
for the very large minimum and maximum errors that were
obtained with only four time points. Although a substantial
amount of spectrometer time is required to collect data at
eight time points, it reduces the probability of such strong
deviationsto only 1/128 (assuming unbiased errors). There-
fore the experiments that we shall now describe used data
collected at eight time points.

RESULTS WITH EXPERIMENTAL DATA

Cross correlation between the **N—'H dipole—dipole in-
teraction and the chemical-shift anisotropy (CSA) of the
nitrogen in the amide groups of proteinsinducesinterconver-
sion of the in-phase and antiphase nitrogen spin orders. The
rate for this process is given by (2, 6, 13, 14)

Rn(Nx = 21,N) = K[33(0) + 33(wn)],  [30]

where K = (%y,ynwnAn{P2(cos ¢)))/r i\ depends both on
the magnitude of the CSA Ay and on the second Legendre
polynomia P, of the cosine of the angle ¢ between the
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TABLE 2
Results of Stimulated Test Problems (Unsmoothed)?
4 8 16
Time points:
Error level: 10% 25% 50% 10% 25% 50% 10% 25% 50%
Weighted sum of squares
Mean (x1079)
Calcd to data 222 9.06 45.2 324 222 85.4 3.77 255 94.3
Calcd to exact 2.01 12.7 51.6 1.62 10.3 45.6 151 9.58 345
Data to exact 4.22 21.8 97.9 4.86 325 131. 5.28 35.2 128.
pa in-phase decay rates
% Error
RMS 24.6 70.1 172.4 9.6 20.8 54.7 4.5 134 29.2
Minimum —56.1 —121.6 —286.0 -20.1 -46.4 —105.3 -95 -22.8 —-42.9
Maximum 57.7 216.0 768.1 26.5 58.1 158.4 89 38.6 105.4
Py anti-phase decay rates
% Error
RMS 82 17.7 35.9 31 8.8 16.3 24 6.5 117
Minimum -17.1 -39.5 -81.7 —6.6 -17.9 -35.4 -5.0 —13.0 —-185
Maximum 18.1 432 60.0 6.4 250 50.0 6.2 14.8 37.1
o cross-relaxation rates
% Error
RMS 11.0 30.2 74.6 7.1 15.7 39.6 5.2 153 318
Minimum —-224 —-51.0 -52.0 -14.7 -25.0 —-59.9 -13.7 -21.0 -41.0
Maximum 329 106.9 3275 21.2 48.1 149.8 11.7 471 105.8
Optimizer convergence rate
% Success
Out of 100 100 96 56 100 100 98 100 100 96

2 The labels in this table have the same meaning as in Table 1, except that the data used here were not smoothed.

principal axis of the chemical-shift tensor and the **N—*H
bond vector.

These rates provide further constraints for use in the spec-
tral-density mapping procedure developed by Peng and
Wagner (15) (which is currently capable of determining the
vaue of the spectral density at only two frequencies), and
contain additional conformational and dynamic information
by virtue of their dependence on the angle ¢ (16). Although
experiments have recently been proposed which yield data
that depend on these rates (16, 17), a general method of
estimating the rates from these data and assigning error bars
to the estimates has not. Therefore, such experiments provide
an excellent demonstration for the method we have devel-
oped in this paper.

As our sample, we used a 3 mM solution of uniformly
5N-enriched oxidized flavodoxin from A. nidulans at pH 6.6
and 303 K. This 169-residue protein yields excellent spectra
for its size, and has been the subject of athorough relaxation

analysis using the Lipari—Szabo and reduced-spectral-den-
sity formalisms (18). The decay of antiphase coherence was
measured as described in (15). The pulse sequence used to
measure the conversion of antiphase to in-phase coherence
is a modification of the spin-locked antiphase experiment
proposed earlier (5, 7, 15), with the omission of the 180°
proton pulses during the relaxation period. |nstead of decou-
pling during acquisition, the two components of each doubl et
were integrated separately and their intensities added to-
gether to average over both noise and artifacts. It should be
understood that these experiments are still under develop-
ment, and at this time the numbers we have derived from
them should be regarded as preliminary.

Both the spectra designed to measure antiphase decay as
well asin-phase build-up were collected at eight time points
equally spaced at intervals of 32 ms. Since the pulse se-
quences used to measure the in-phase and antiphase coher-
ence differed in length by only about 6 ms, the cross-peak
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FIG. 1. Plotsof perturbed negative build-up (circles) and decay (aster-

isks) data, the corresponding smoothed data (pluses and crosses), the final
fit to the unsmoothed data (solid lines), and the exact solution (dashed
lines), for a simulated problem using eight time points and a 25% error
level. The build-up data and curves have been scaled by a factor of four
for easier viewing.

intensities measured in the two experiments should be on
very nearly the same scale. After trying several different
peak-integration procedures, we concluded that none worked
significantly better than simply measuring the height of each
cross peak. The heights of both the in-phase and the anti-
phase cross peaks were normalized by dividing them by the
height of the antiphase cross peak at the first time point.
Thus the data set g, = [am, bn] " (1 < m < 8) for each
amide group consisted of two sequences of eight normalized
cross-peak heights, where a = (N,) and b = (2I,N,).
Twenty-four of the 165 potential pairs of cross peaks (169
residues — 3 prolines — 1 N-terminus) could not be mea-
sured because they were either too weak or overlapped with
other cross peaks; these have simply been omitted from the
following discussion and figures.

In addition to simply applying our procedure to each of
these 141 data sets, we a so performed a Monte Carlo analy-
sis in order to establish error bars on the estimated rates.
This was done by computing the (unweighted) sum of the
squares of the deviations between the fitted curves and the
(unsmoothed) data, dividing by the number, 16, of data
points, and using the square root of the result as the standard
deviation for 200 independent perturbations of the data by
the addition of Gaussian random numbers. Our procedure
was run on each of these 200 perturbed data sets, and the
RMS deviation from the rates estimated from the unper-
turbed datawastaken as an estimate of the standard deviation
in the rates. Therefore, unlike our simulated test problems,
the errors we report here should be regarded as conservative
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estimates of the true errors, which make no allowance for
outliers or systematic deviations.

A visual presentation of the results is given in Figs. 2
through 4; a complete table containing all the numerical
valuesis available from the authors. The following statistics
will be useful in discussing these results:

1. The average of the estimated rates along the sequence,
which is obtained simply by adding up the rates over all
amino acids at which estimates were successfully obtained,
and dividing by the number of such amino acids.

2. The average of the standard deviations in the rates
along the sequence, where these standard deviations were
estimated from the Monte Carlo procedure described above.

3. The standard deviation in the estimated rates from their
average aong the sequence, as defined in 1 (above); note
that this has no direct connection to the average standard
deviation defined in 2!

All rates are given in units of inverse seconds.

The average of the estimated in-phase decay rates along
the sequence was 8.71, while their average estimated stan-
dard deviations was 0.83. Most of the larger deviations from
the average are associated with large estimated standard de-
viations (Fig. 2), and hence are not statistically significant.
While some systematic variations in the rates along the se-
guence can be seen, they are at most twice the average
estimated standard deviation, and the standard deviation of
the estimated rates from their average along the sequence is
only 1.03. Thislack of large sequence variations in the rates
is consistent with that observed in independent measure-
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FIG. 2. Plots of the in-phase decay rates versus amino acid sequence
number, in units of inverse seconds. The estimated value of the rate is
located at the center of each vertical line in the plot, and the length of each
line is equal to twice the estimated standard deviation in its value (see
text).
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number. The units and symbols in this plot have the same meanings as in
Fig. 2.

ments of T, (18), and it is therefore not surprising that the
RMS difference between our rates and the Ty, rates (over
the 133 amino acids at which both were available) is only
1.00. The average of the T, rates along the sequence is
9.16, however, which indicates that these latter rates tend to
be dlightly larger than ours.

Aswas expected from our simulations, our estimated anti-
phase decay rates are substantially more precise, with stan-
dard deviations of only 0.44 on the average. It is interesting
to observe that there is considerably more scatter in the
antiphase rates than in the in-phase rates, with a standard
deviation from the average of 1.73 (Fig. 3). Thisis consis-
tent with the fact that the antiphase decay rates include con-
tributions from proton—proton dipole—dipole interactions,
which vary with the density of neighboring protons aong
the sequence. In this case, the RMS difference with the 133
antiphase decay rates that were also determined indepen-
dently by monoexponentia fits with suppression of cross
correlation (18) was 2.61. Much of this difference was due
to the difference in the average rates along the sequence,
which were 15.32 and 17.25 for the rates determined here
and those determined with suppression of cross correlation,
respectively.

The cross-relaxation rates o again appear to be reasonably
well determined by the data, with estimated values and stan-
dard deviations averaging 5.63 and 0.35 aong the sequence,
respectively (Fig. 4). The standard deviation along the se-
guence is 0.99. As before, the larger deviations from the
average tend to be associated with larger estimated standard
deviations, but not always. One such case occurs at Asn-
135, which yielded the unusually low cross-relaxation rate
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of 3.00 = 0.13; this amino acid is located in a highly acid
and nonconserved loop. The only comparably small cross-
relaxation rates occurred on the epsilon-nitrogen of Trp-66
(not shown). Unusualy large rates exceeding 8 were ob-
served in severa places, the most convincing of which were
found in another loop at both Gly-26 and Gly-27 (8.08 and
9.66, respectively). The largest single antiphase decay rate
was also observed at Gly-27 (21.49), and there was a sig-
nificant overall correlation between the antiphase decay rates
and the cross-relaxation rates, with a correlation coefficient
of 0.63. The correlation between the in-phase decay rates
and the cross-relaxation rates was 0.35, while the in-phase
and antiphase rates were essentialy uncorrelated at 0.10.

We conclude that, although many of the differences and
trends that may be seenin Figs. 2 through 4 are certainly real
and contain structural and dynamic information, improved
experiments will be needed in order to obtain the rates with
higher precision before their full significance can be as-
sessed. Such experiments are currently under development
in our laboratory.

CONCLUSIONS

We have described a novel procedure for estimating small
relaxation matrices, and we have shown that it gives good
results on typical 2 X 2 problems. In contrast, this laborato-
ry’s experience has been that a ‘*naive’’” implementation of
an approach based on multiexponential fits (as described in
the Introduction) is extremely sensitiveto errorsin simulated
data, and even to the convergence criterion used to compute
the multiexponential fit. More reasonable results can be ob-
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FIG. 4. Plots of in-phase to antiphase cross-relaxation rates versus

amino acid sequence number. The units and symbols in this plot have the
same meanings as in Fig. 2.
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tained through a determined effort to stabilize these fits, for
example, by appropriate smoothing and weighting proce-
dures, or by regularization functional methods. Comparing
our method with all possible variants of methods based on
multiexponentia fits is outside the scope of this paper, but
the sensitivity of multiexponential fits to errors in the data
is well known to researchers in many different fields of
science and engineering. It is therefore quite certain that
better results will generally be obtained with less effort from
an approach that fits the exponential of the relaxation matrix
directly as we have done here. This approach is also less
labor intensive than the multiple experiments that are needed
to determine the rates one at atime from scalar (mullti ) expo-
nential fits.

Although we have illustrated the approach here for the
special case of cross correlation-induced cross relaxation
between the in-phase and antiphase nitrogen coherence of
the amide groups of proteins, the method should be readily
generalized to a wide variety of other molecular relaxation
processes. The method can a so be extended, in a straightfor-
ward fashion, to the estimation of larger relaxation matrices
containing many more independent rates, providing that
measurements at a sufficiently large number of time points
are available. Alternatively, one could collect data for multi-
pleinitial conditions, as illustrated, for example, in (19).

In particular, symmetric two-dimensional spectra such as
NOESY in principle contain the results of experiments per-
formed for all possible initial conditions of the form [1, O,
...,0],[0,4,...,0],...,[0,0, ..., 1] (i.e, with al
coherence initially in one spin order). In practice, the pres-
ence of numerous missing and/or overlapping cross peaks
would greatly complicate the application of methods like
that described in this paper, which would also become com-
putationally extremely demanding. Nevertheless, we believe
that such an approach could yield better results (and is at
least more direct) than the numerous *‘ bootstrap’” methods
that have been developed for estimating large relaxation ma-
trices from NOESY spectra [ see, e.g., (20)], particularly if
used in conjunction with the spectrum decomposition meth-
ods introduced in Ref. (21). Further work along these lines
isin progress.
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