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This paper introduces a novel computational method for esti- tally and computationally challenging. Cross relaxation in-
mating relaxation rates among pairs of spin orders. This method duced by cross correlation between the dipole–dipole inter-
simultaneously estimates all the auto- and cross-relaxation rates action and chemical-shift anisotropy in the amide groups of
from the same measurements, and avoids the ill-conditioning prob- proteins is a case of particular interest, since the correspond-
lems associated with multiexponential fits. The method models ing cross-relaxation rates can potentially yield additional
the relaxation dynamics by a system of linear differential equa-

data for use in spectral-density mapping, but these effectstions, and assumes that measurements of the spin orders have been
have proven difficult to measure accurately in macromole-made at an equally spaced sequence of time points. It computes a
cules (3–7) .nonlinear least-squares fit of the exponential of the rate matrix at

The most common procedure for estimating cross-relax-the shortest time point to these measurements. Preliminary esti-
mates of the exponential matrix and initial spin orders from which ation rates starts by suppressing the coherence-transfer path-
to start the computations are obtained by solving simpler linear- ways responsible for the cross relaxation, in order to deter-
least-squares problems. The performance of the method on simu- mine the auto-relaxation rates from monoexponential fits.
lated 2 1 2 test problems indicates that when measurements at Then the eigenvalues of the relaxation matrix are estimated
eight or more equally spaced times spanning the maximum and from multiexponential fits without suppression of the cross
inflection points of the build-up curves are available, the relative

relaxation and used, together with the auto-relaxation rates,errors in the rates are usually less than the relative errors in the
to derive the cross-relaxation rates. Unfortunately, direct fitsmeasurements. The method is further demonstrated by applying
to multiple decaying exponentials is a notoriously ill-condi-it to the problem of determining the cross correlation-induced
tioned problem (8) . This means that the noise and othercross-relaxation rates between the in-phase and antiphase coher-

ence of the amide groups in the 15N-labeled protein oxidized fla- errors present in the integrated cross-peak intensities produce
vodoxin. Finally, the possibility of extending the method to other even larger errors in the estimated relaxation rates, because
kinds of relaxation measurements and larger spin systems is dis- the intensities do not change significantly over large but
cussed. q 1997 Academic Press compensating changes in the rates. This difficulty, it should

be noted, is entirely distinct from the multiple-minimum
problem, and often occurs even in linear-least-squares prob-

INTRODUCTION
lems (9) . An example that arises in the interpretation of
NMR data may be found in Ref. (10) .Relaxation rates contain important information on molec-

In this paper, we describe a simpler and more directular conformation and dynamics (1) . In our laboratory, con-
method for estimating cross-relaxation rates that both avoidssiderable attention has been given to the determination of
the need to determine the auto-relaxation rates independentlythe auto- and cross-relaxation rates among the various spin
and at the same time avoids the problems associated withorders in the amide groups of proteins, since these enable
multiexponential fits. This approach is developed and evalu-one to ‘‘map’’ their spectral-density functions directly (2) .
ated in the special case of a 2 1 2 symmetric relaxationWhile well-established methods of determining the auto-
matrix, but it should be possible to extend it to larger spinrelaxation rates are available, the determination of the (usu-
systems. The main idea is to directly estimate the exponentialally much smaller) cross-relaxation rates is often experimen-
of the relaxation matrix by fitting the build-up and decay
measurements at a sequence of time points. Providing that

* Preliminary accounts of this work were presented at the 36th Experi- these time points are equally spaced, the properties of themental Nuclear Magnetic Resonance Conference, March 1995, Boston,
matrix exponential and its derivatives (11) enable us to solveMassachusetts, and the 50th International Society for Magnetic Resonance

Conference, July 1995, Sydney, Australia. this inverse problem using standard linear- and nonlinear-
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373ESTIMATING CROSS-RELAXATION RATES FROM FITS TO BUILD-UP AND DECAY CURVES

least-squares procedures. In the case of a 2 1 2 matrix metry of R . In order to obtain the 2 1 2 matrix exponential
in closed form, we defineexponential, we have also derived an analytic formula for

the relaxation rates.
Our results with simulated data indicate that, providing

measurements at eight or more well-placed time points are S å R 0 aI Å F d s

s 0d
G , [3]

available, the relative errors in the estimated rates are usually
less than the relative errors in the individual measurements.

where a å tr (R) /2 is half the trace and d å (ra 0 rb) /2.The method is further illustrated by an application to the
Since the identity matrix I commutes with any matrix, thedetermination of the rate of conversion of antiphase to in-
exponential factorizes as exp( tR) Å exp( ta)exp( tS) .phase coherence in the amide groups of the 15N-labeled pro-
Moreover, the characteristic equation for S is S2 Å b 2I ,tein, oxidized flavodoxin, which is due to chemical-shift
whereanisotropy/dipole–dipole cross correlation. Finally, the po-

tential of the method as a general means of estimating relax-
ation matrices is discussed. b 2 å d 2 / s 2 Å 0det(S) . [4]

THEORY
Collecting even and odd terms in the Taylor series for
exp( tS) thus yields an analytic formula for the exponentialThe relaxation among a pair of spin orders that are isolated

from all other spin orders in the molecule is governed by a of the relaxation matrix

exp( tR) Å e tae tS

Å e ta( I cosh( tb) / S sinh( tb) /b)

Å e taFcosh( tb) / d sinh( tb) /b s sinh( tb) /b

s sinh( tb) /b cosh( tb) 0 d sinh( tb) /bG . [5]

2 1 2 symmetric system of ordinary linear differential equa- In the following, we shall denote the functions of time ob-
tained by suppressing the dependence of the exponential ontions with constant coefficients (2) , i.e.,
the relaxation matrix R by F( t) å [ fij( t)] å exp( tR) .

The relaxation matrix R can be obtained from the matrixdq
dt
å F da /dt

db /dtG Å Fra s

s rb
GrFa( t)

b( t) G å Rrq . [1] exponential F å [ fij] at a fixed point t in time as follows.
First, we use Eq. [5] to evaluate the two ratios

We have labeled the two components of the spin-order
vector q Å q ( t ) as ‘‘a ’’ and ‘‘b ’’, and adsorbed the usual j Å f11 0 f22

2 f12

Å d

s
[6]

minus signs into the rates. Thus the rates ra and rb are
negative, and the condition s 2 õ rarb implies that the

andrelaxation matrix R itself is stable ( i.e., that its eigenval-
ues are negative ) . In the following, we shall refer to ra

and rb as the auto-relaxation and s as the cross-relax-
h Å 2 f12

f11 / f22

Å s

b
tanh( tb) Å tanh( ts

√
1 / j 2)√

1 / j 2
. [7]ation rates. Equation [1] , of course, is applicable to many

different relaxation processes, regardless of the mecha-
nism of relaxation.

On inverting Eq. [7] and rearranging, we obtain the cross-
The formal solution to Eq. [1] is given by

relaxation rate as

q( t) Å exp( tR)rq(0) , [2]

s Å arctanh(h
√
1 / j 2)

t
√
1 / j 2

. [8]
where the exponential of the matrix tR may be defined by
its Taylor series exp( tR) Å I / tR / ( tR)2 /2! / rrr and
q(0) is the initial spin-order vector. Since the powers of a Next, we use Eq. [6] to compute d Å js, and then obtain

a from the Jacobi identity (12) , i.e.,symmetric matrix are symmetric, exp( tR) inherits the sym-
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374 NAJFELD ET AL.

the inexact measurements qm of the exact solution q( tm) are
a Å tr (R)

2
Å log[det(F)]

2t
. [9] taken, where tm Å hrm for some fixed h ú 0 and m Å 1,

. . . , M . We shall use the fact that the exponential of a
symmetric matrix is symmetric, together with the well-Finally, the auto-relaxation rates are obtained from
known addition formula, exp(sR)rexp( tR) Å exp[(s /
t)R] , to derive a new relation between the initial spin-order

ra Å a / d and rb Å a 0 d. [10]
vector and the spin-order vectors at three time points tm , tn ,
and tm/n Å tm / tn with 1 £ m , n £ m / n £ M , namely

This ‘‘eigen-free’’ approach avoids computing the matrix
logarithm; it does, however, contain two scalar logarithms,

q(0)T
rq( tm/n) Å q( tm)T

rq( tn) . [11]
one in Eq. [9] and the other hidden in the arctanh of Eq.
[8] . Thus, these formulae will be numerically unstable only

The proof goes as follows:if det(F) õ e or Éh
√
1 / j 2

É ú 1 0 e for some e ú 0 of
order of the machine precision.

q( tm)T
rq( tn) Å [exp( tmR)rq(0)]T

r[exp( tnR)rq(0)]We now state some of the most important properties of
the solution to Eq. [1] , which have proved useful in the Å q(0)T

rexp( tmR)rexp( tnR)rq(0)
design and qualitative analysis of the experiments. Proofs

Å q(0)T
rexp[( tm / tn)R]rq(0)may be obtained from the analysis of Eqs. [4] and [5]:

Å q(0)T
rq( tm/n) . [12]1. The auto-relaxation functions f11( t) and f22( t) are posi-

tive, bounded by one, convex, and strictly decreasing with
If one component of the initial spin-order vector q(0) Åtime.
[a(0) , b(0)]T is known to be zero, e.g., a(0) Å 0, this2. The cross-relaxation function f12( t) satisfies sf12( t) §
relation is sufficient to determine the other component b(0)0 as well as Éf12( t)É £ f11( t) if d § 0, or Éf12( t)É £ f22( t)
Å [a( tm)a( tn) / b( tm)b( tn)] /b( tm/n) . We mention that for-if d £ 0.
mula [11] is valid for an arbitrary sequence of time points3. The cross-relaxation function has a unique extremum
t1 , . . . , tM as long as each tk is of the form tk Å tm / tn withat time text Å arctanh(0b /a) /b, and a unique inflection
1 £ m, n õ k £ M . Hence any arithmetic, geometric, orpoint at 2text .
even Fibonacci sequence can be used.4. At this extremum, we have f11(text ) / f22(text ) Å ra /rb

Formula [11] gives us a means of estimating the initialas well as f12(text ) £ s /2.
condition of a solution to a symmetric system of linear differ-

We now outline our procedure for estimating the relax- ential equations. Thus, given approximate measurements q1 ,
ation matrix, which uses measurements of the spin-order . . . , qM of the spin-order vectors q( t1) , . . . , q( tM) , we seek
vector q( t) at a sequence of equally spaced time points, and an estimate q̂0 of the initial condition q(0) by satisfying all
assumes that the relaxation rates are independent variables. instances of Eq. [11] as closely as possible, in the least-
The procedure itself consists of the following three steps. In squares sense. This leads to the following two-variable lin-
the first step, a preliminary estimate of the initial spin order ear-least-squares problem in the unknown initial spin order
( if it cannot be measured directly) , together with the expo- u :
nential at the shortest time point, is obtained from two differ-
ent linear-least-squares fits. In the second step, these prelimi- F(qP 0) Å min

u
[F(u)]

nary estimates are used as the starting values for a nonlinear-
least-squares fit, which more accurately models the relax-

Å min
u

( ∑
M /2

mÅ1

∑
M0m

nÅm

\qT
m/nru 0 qT

mrqn\
2) . [13]ation dynamics including the initial condition; because such

nonlinear fits are prone to being trapped in local minima,
the preliminary estimates are nevertheless essential if a good

On setting the gradient of F to zero, we obtain the normalfit is to be found reliably. In the final step, the relaxation
equations for this problem, namely Aru Å b , wherematrix is calculated from the estimated exponential, using

the inversion procedure given in Eqs. [6] through [10]
above. A Å ∑

M /2

mÅ1

∑
M0m

nÅm
F a 2

m/n am/nbm/n

am/nbm/n b 2
m/n

G
LINEAR ESTIMATES

b Å ∑
M /2

mÅ1

∑
M0m

nÅm
F (aman / bmbn)am/n

(aman / bmbn)bm/n
G .

[14]Consider first the problem of estimating the initial spin-
order vector q(0) . Let t1 , . . . , tM be the time points at which
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375ESTIMATING CROSS-RELAXATION RATES FROM FITS TO BUILD-UP AND DECAY CURVES

In the event that one component of the initial spin order is m £ M , then shifting all the times by t0 affects only the
initial condition, but not the derived rate matrix. Therefore,known to be zero, this becomes a univariate linear-least-

squares problem whose solution is obtained from a single all of the above formulae for the matrix F̂h (as in Eq. [16])
may be used unchanged. More generally, it is not difficultrow of the equation Aru Å b .

We now turn to the problem of obtaining a preliminary to extend these formulae to the case in which the time points
are distributed as k1h , k2h , . . . , kmh for an arbitrary increas-estimate F̂h of the matrix exponential at time h . Since
ing sequence of integers k1 õ k2 õ rrr õ km .

q( tm/1) Å F(h)rq( tm) (1 £ m £ M 0 1) [15]
NONLINEAR ESTIMATES

by Eq. [2] , it makes sense to try to satisfy these relations
Once these preliminary estimates of the initial spin-orderas closely as possible, once again in the least-squares sense.

vector q̂0 and the matrix F̂h have been obtained, they shouldThis leads to another linear-least-squares problem, namely
be refined by means of the nonlinear-least-squares fit

C(FO h) Å min
V

[C(V)]
V(q0 , Fh) Å min

u,V
[V(u , V)]

Å min
V

( ∑
M01

mÅ1

\Vrqm 0 qm/1\
2) , [16] Å min

u,V
( ∑

M

mÅ1

\Vm
ru 0 qm\ 2) [18]

where the minimum is now taken over all 2 1 2 symmetric to obtain the final estimates q0 , Fh .
matrices V . The least-squares fit in Eq. [18] tends to produce better

The normal equations for this problem are obtained by results than that in Eq. [16] because it treats the initial condi-
setting the gradient of C with respect to the three indepen- tion as an unknown, and computes the entire time sequence
dent elements of V Å [£ij] to zero. Letting v Å [£11 , £12 , from it together with the current estimate of the exponential
£22]T , these equations are written in matrix form as Crv Å matrix. Equation [16], in contrast, predicts the measure-
d , where ments at each time point from those at the preceding time

point only, and is therefore more strongly affected by ‘‘outli-
ers.’’ Although the function V in Eq. [18] may have numer-

C Å ∑
M01

mÅ1
F a 2

m ambm 0
ambm a 2

m / b 2
m ambm

0 ambm b 2
m

G ous local minima, the preliminary estimates obtained from
the previous step are already fairly good as a rule, and hence
convergence to a satisfactory solution is almost always ob-
tained. We should also point out that this least-squares fit is
quite different from Prony’s method, a classical method thatd Å ∑

M01

mÅ1
F amam/1

ambm/1 / am/1bm

bmbm/1

G . [17]
has been used to interpolate and fit data points by a linear
combination of scalar exponentials.

In this work, we have usually used a BFGS quasi-Newton
Using the Cauchy–Schwarz inequality, it is easy to show method with a cubic line search to get close to a minimum
that the determinant of this matrix vanishes only if am Å 4bm of V, followed by a few iterations of Newton’s method
for some constant 4 and all 1 £ m £ M 0 1. Hence the 3 to attain machine precision. In some of our simulated test
1 3 matrix C (as well as the 2 1 2 matrix A in Eq. [14]) problems using small amounts of data containing very large
is well conditioned unless the initial spin-order vector q(0) errors, this procedure failed to converge. In such cases con-
is near the nonnegative eigenvector r of R . Since F( t) Å vergence can be obtained by varying the preliminary values
exp( tR) has the same eigenvectors as R , this means that of the initial spin orders and rates within a small range about
F( t)rq(0) É k( t)r for some scalar function k and all t § the values as calculated above. Since divergence was seldom
0, so that the measurements qm are nearly linearly dependent. encountered with the experimental data (see below), we
Fortunately, in most experiments, we have a(0) Å 0 or b(0) omit the details of this procedure.
Å 0, so this can happen only if the cross-relaxation rate s Like most reasonably efficient nonlinear optimization

methods, this procedure requires the first and second deriva-is small compared to
√
rarb ( in which case the build-up curve

tives of the function V with respect to the variables u , V .will probably be below the noise level) . This can be ascer-
If we let zm Å Vm

ru 0 qm , the gradient can be written astained from the data by means of Properties 3 and 4 in the
previous section. ÇV Å 2 (M

mÅ1 (Çzm)T
r(zm 0 qm) , where Çzm denotes the

5 1 2 Jacobian matrix of the vector-valued function zm ÅIt may be observed that if a sequence of time points is
given by tm Å t0 / mh , for some t0 , h ú 0 and integer 1 £ zm(u , V) . The partials with respect to the initial spin-order
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376 NAJFELD ET AL.

variables u can be expressed either as a recurrence relation of order of the machine precision, this has seldom happened
in any of our simulations using physically reasonable relax-or in closed form:
ation matrices and error levels; it also did not occur in our
applications to experimental data (see below). Should thisÌzm

Ìu
Å Vr

Ìzm01

Ìu
Å rrr Å Vm

r

Ìu
Ìu

Å Vm . [19] problem be encountered in the sorts of applications described
here, the data should be checked for serious systematic er-
rors.A recurrence relation for the partials with respect to the

In the simulations described below, as well as with thevariables £ij is also straightforward, namely
experimental data described in the next section, we have
smoothed the data using a simple three-point digital filter,Ìzm

Ì£ij

Å Vr
Ìzm01

Ì£ij

/ Eijrzm01 (1 £ i £ j £ 2), [20] i.e.,

q
V 1 Å (2q1 / q2) /3

where
qV m Å (qm01 / 2qm / qm/1) /4 (m Å 2, . . . , M 0 1)

q
V M Å (qM01 / 2qM) /3. [24]E11 Å F1 0

0 0G , E12 Å F0 1

1 0G ,

It is also beneficial to equalize the contributions of the a and
b components of the residual vector to the fit by replacing the

E22 Å F0 0

0 1G . [21]
norms in Eqs. [16] and [18] with

\qI m 0 q
V m\ 2

r (aI m 0 a
V m)2(1 0 wm)Working backward from the zeroth term in this recursion

yields the closed formula / (bH m 0 bU m)2wm , [25]

where q̃m å Vrqm01 for Eq. [16], qI m å Vm
ru for Eq. [18],Ìzm

Ì£ij

Å ( ∑
m

lÅ1

Vm0l
rEijrVl01)rz0 Å

Ì(Vm)
Ì£ij

rz0 , [22]
and the weights are given by

where z0 Å u (1 £ i £ j £ 2). The last equality in this wm Å Éa
V mÉ/ (Éa

V mÉ / ÉbU mÉ) . [26]
equation recapitulates a well-known formula for the deriva-
tive of Vm in the matrix direction Eij (11) . In practice, how- The modifications of the normal equations and derivatives
ever, the recurrence formula in Eq. [20] is easier to use, required to do this are straightforward. Other choices of
since the derivatives of all the powers 1, . . . , M are required. weights, perhaps depending on m , could shift the errors from

The elements of the Hessian Ç2V are similarly obtained the estimated cross-relaxation rate to the less important auto-
from the following recurrence relations: relaxation rates, but this would require a detailed knowledge

of the actual error distribution in the experimental data.
Ì 2zm

Ìui Ìuj

Å 0 ,
Ì 2zm

Ì£ijÌuk

Å Eijr
Ìzm01

Ìuk RESULTS OF SIMULATIONS

The above procedures were implemented in the MatlabÌ 2zm

Ì£ijÌ£kl

Å Eijr
Ìzm01

Ì£kl

/ Vr
Ì 2zm01

Ì£ijÌ£kl

/ Eklr
Ìzm01

Ì£ij

[23]
numerical linear algebra system, using the ‘‘fminu’’ rou-
tine from the optimization toolbox for the BFGS minimiza-

(1 £ i , k £ j , l £ 2). We note in passing that all these tion. The amount of CPU required, as measured by the Mat-
formulae can be extended to the case of arbitrary N-dimen- lab ‘‘flops’’ routine, was typically about 25,000 1 M
sional vectors u , qm , and matrices V , including nonsymmet- floating-point operations for each fit.
ric matrices. In addition, it is not difficult to extend them to The test problems were all generated using a single relax-
any sequence of time points that are integer multiples of the ation matrix, which was chosen to be similar to those that
shortest time point, just as for our linear fits. were expected in the experiments we have performed (see

Finally, we compute the relaxation matrix R from the below), namely
refined estimate Fh of the exponential at time t1 Å h , exactly
as described under Theory. Although this calculation can

R Å F012 05

05 020G . [27]fail if the determinant det(Fh) õ e or the corresponding
value of Éh

√
1 / j 2

É ú 1 0 e in Eq. [8] for some small e
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A time step of approximately h Å 3text /M Å 0.1877/M was points were used, the relative errors in the cross-relaxation
rate s were comparable to the relative errors in the mea-chosen, which places roughly one-third of the points before

the maximum of the build-up curve, one-third between the surements, on the average. It will also be observed that
the errors in the auto-relaxation rate ra were considerablymaximum and the inflection point, and one-third after the

inflection point (see Property 3 under Theory). An initial larger than the errors in s, whereas the errors in the other
auto-relaxation rate rb were considerably smaller. This isspin order q0 Å [a0 , b0]T with a0 Å 0 and b0 √ (1, 2) was

used, and the build-up and decay curves were computed by consistent with the fact that the initial condition had a0 Å
0, so that all knowledge of ra was derived from the rela-multiplying q0 by the exponential exp(hR) a total of M

times, where the number of time points M was 4, 8, or 16. tively weak build-up curve. Finally, it can be seen from
the differences in the minimum and maximum relativeThe data were then generated by adding errors to the curves,

according to the formula errors that some of the estimates, most notably those ob-
tained from only four time points, were extremely biased.
In particular, ra and s were systematically too high,qm Å (1 / erm)j[exp(mhR)rq0]
whereas rb was systematically too low.

By further refining the values obtained from fitting theÅ F (1 / er1m)am

(1 / er2m)bm
G , [28]

smoothed data against the unsmoothed data (Table 2), these
biases were found to be primarily due to the smoothing
procedure. The RMS relative errors in the rates also tendedwhere rmÅ [r1m , r2m]T is a random vector whose two compo-
to be less when fitting the unsmoothed data. In this regard,nents were uniformly distributed in the interval [01, 1] ,
it should further be observed that the fits of the calculatedand the bold dot signifies element-by-element multiplication.
curves to the smoothed data (‘‘calcd to data’’ in Table 1)The (relative) ‘‘error levels’’ e used in our simulations were
were generally better than the corresponding fits to the un-0.1, 0.25, and 0.5.
smoothed data (‘‘calcd to data’’ in Table 2); i.e., theThis error model is clearly rather drastic, since the random
smoothed data can generally be fit more closely than theerrors in actual experimental data are likely to be more addi-
unsmoothed. The fits of the calculated curves to the curvestive than multiplicative, and their distribution, even if not
obtained from the exact relaxation matrix in Eq. [27]Gaussian, will at least tend to fall off with increasing size.
(‘‘calcd to exact’’ in Table 1) were generally neverthelessMeasurements of cross-peak intensities, however, are often
worse than the corresponding fits to the smoothed dataafflicted by outliers and systematic deviations, whose ex-
(‘‘calcd to data’’ in Table 1), whereas the opposite waspected magnitudes can at best be bounded from above. With-
observed with the fits to the unsmoothed data (Table 2).out knowing how these sorts of errors are distributed, it is
These observations are another symptom of the bias intro-pointless to attempt to determine the resulting probability
duced by smoothing. For comparison, the fits of the data todistribution in the results. The above error model does at
the exact curves (‘‘data to exact’’ in the tables) are alsoleast enable us to obtain worst-case bounds on the magnitude
given.of the relative errors that can be expected in the results,

Unfortunately, the fits to the unsmoothed data were alsogiven the bounds on the relative errors e in the data. This is
numerically more difficult to compute, and Newton’s methodthe standard method of quantifying the sensitivity of a func-
more frequently diverged when the number of time pointstion to perturbations.
was small and the error level high. Direct fitting of theFor each of the nine possible combinations of these three
unsmoothed data, without first fitting the smoothed data,values each of M and e, we generated a total of 100 test
diverged even more often. Fortunately, by first fitting theproblems and ran our fitting procedures on each. The relative
smoothed data, the convergence rate obtained with reason-error matrix was calculated from the resulting relaxation
ably good unsmoothed data at eight or more time pointsmatrices as
remained acceptable. Therefore, until a less biased smooth-
ing strategy can be developed, this final optimization against
the unsmoothed data is strongly recommended. Figure 1F (r calc

x 0 rx) /rx (s calc 0 s) /s

(s calc 0 s) /s (r calc
y 0 ry) /ry

G , [29]
shows plots of the perturbed data, the smoothed data, the
final fit to the unsmoothed data, and the exact solution, for
a typical problem with eight time points and a 25% errorand the minimum, maximum, and RMS (root-mean-square)

values for each of the three independent entries in this matrix level.
In summary, our simulations indicate that whenever datawere computed over all the runs which converged. The re-

sults obtained by fitting the weighted and smoothed data are at eight or more time points are available and the true 2 1
2 relaxation matrix is similar to that shown in Eq. [27], oursummarized in Table 1.

It will be observed that, providing eight or more time method of fitting the build-up and decay curves will usually
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TABLE 1
Results of Simulated Test Problems (Smoothed)a

4 8 16
Time points:
Error level: 10% 25% 50% 10% 25% 50% 10% 25% 50%

Weighted sum of squares

Mean (11003)
Calcd to data 1.67 2.46 5.38 3.68 8.35 24.1 4.39 10.5 25.8
Calcd to exact 6.96 16.1 49.2 3.90 11.7 45.7 2.99 10.3 31.6
Data to exact 8.66 18.5 55.1 7.67 20.3 70.8 7.47 21.2 57.7

ra in-phase decay rates

% Error
RMS 65.0 109.4 174.5 14.3 24.5 62.0 7.8 16.9 34.6
Minimum 4.2 063.9 0184.3 012.5 041.7 099.0 03.2 018.7 036.8
Maximum 123.4 313.3 948.4 36.6 70.2 198.0 17.6 45.6 122.5

rb antiphase decay rates

% Error
RMS 18.9 20.6 31.8 6.7 9.5 14.6 4.6 6.1 8.4
Minimum 030.1 047.3 087.1 012.0 020.9 032.3 08.7 014.8 020.3
Maximum 0.0 13.3 51.9 0.0 14.1 34.3 1.2 5.9 19.5

s cross-relation rates

% Error
RMS 29.5 49.1 82.8 11.4 19.2 45.7 7.5 18.0 35.8
Minimum 0.2 032.2 060.9 09.8 021.4 055.1 08.2 018.4 038.5
Maximum 65.7 154.3 413.0 31.3 59.3 171.1 18.8 53.5 126.8

Optimizer convergence rate

% Success
Out of 100 100 100 92 100 100 98 100 100 99

a The first row, labeled ‘‘Time points,’’ contains the numbers of time points M that were used. The second, labeled ‘‘Error level,’’ contains the values
of e that were used to perturb the simulated data, as in Eq. [28]. The first set of rows, labeled ‘‘Weighted sum of squares,’’ contains the values of the
fits, weighted in accord with Eq. [26], between the perturbed smoothed data (data), the exact solution simulated from the relaxation matrix in Eq. [27]
(exact), and the solution calculated from the fitted rates and initial spin orders (calcd). The following three sets of rows contain the root-mean-square
average of the relative errors in each of the rates rx , ry , and s, computed according to Eq. [29] (RMS), along with the minimum and maximum relative
errors over all converging runs. The last row of the table contains the number of runs which converged out of the total 100 random perturbations.

produce rates whose relative errors are less than the largest RESULTS WITH EXPERIMENTAL DATA
relative errors in the data. This shows that the problem of
estimating the rates, as formulated in this paper, is not ill Cross correlation between the 15N– 1H dipole–dipole in-
conditioned. There is, of course, always a chance that all of teraction and the chemical-shift anisotropy (CSA) of the
the errors in the data are either positive or negative, and in nitrogen in the amide groups of proteins induces interconver-
this case a strong deviation of the estimated rates from the sion of the in-phase and antiphase nitrogen spin orders. The
exact rates is simply inevitable. This is, in fact, the reason rate for this process is given by (2, 6, 13, 14)
for the very large minimum and maximum errors that were
obtained with only four time points. Although a substantial RIN(Nx } 2IzNx) Å K[ 2

3J(0) / 1
2J(vN)] , [30]

amount of spectrometer time is required to collect data at
eight time points, it reduces the probability of such strong
deviations to only 1/128 (assuming unbiased errors) . There- where K Å (\gIgNvNDN »P2(cos w) …) /r 3

IN depends both on
the magnitude of the CSA DN and on the second Legendrefore the experiments that we shall now describe used data

collected at eight time points. polynomial P2 of the cosine of the angle w between the
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TABLE 2
Results of Stimulated Test Problems (Unsmoothed)a

4 8 16
Time points:
Error level: 10% 25% 50% 10% 25% 50% 10% 25% 50%

Weighted sum of squares

Mean (11003)
Calcd to data 2.22 9.06 45.2 3.24 22.2 85.4 3.77 25.5 94.3
Calcd to exact 2.01 12.7 51.6 1.62 10.3 45.6 1.51 9.58 34.5
Data to exact 4.22 21.8 97.9 4.86 32.5 131. 5.28 35.2 128.

ra in-phase decay rates

% Error
RMS 24.6 70.1 172.4 9.6 20.8 54.7 4.5 13.4 29.2
Minimum 056.1 0121.6 0286.0 020.1 046.4 0105.3 09.5 022.8 042.9
Maximum 57.7 216.0 768.1 26.5 58.1 158.4 8.9 38.6 105.4

rb anti-phase decay rates

% Error
RMS 8.2 17.7 35.9 3.1 8.8 16.3 2.4 6.5 11.7
Minimum 017.1 039.5 081.7 06.6 017.9 035.4 05.0 013.0 018.5
Maximum 18.1 43.2 60.0 6.4 25.0 50.0 6.2 14.8 37.1

s cross-relaxation rates

% Error
RMS 11.0 30.2 74.6 7.1 15.7 39.6 5.2 15.3 31.8
Minimum 022.4 051.0 052.0 014.7 025.0 059.9 013.7 021.0 041.0
Maximum 32.9 106.9 327.5 21.2 48.1 149.8 11.7 47.1 105.8

Optimizer convergence rate

% Success
Out of 100 100 96 56 100 100 98 100 100 96

a The labels in this table have the same meaning as in Table 1, except that the data used here were not smoothed.

principal axis of the chemical-shift tensor and the 15N– 1H analysis using the Lipari–Szabo and reduced-spectral-den-
sity formalisms (18) . The decay of antiphase coherence wasbond vector.

These rates provide further constraints for use in the spec- measured as described in (15) . The pulse sequence used to
measure the conversion of antiphase to in-phase coherencetral-density mapping procedure developed by Peng and

Wagner (15) (which is currently capable of determining the is a modification of the spin-locked antiphase experiment
proposed earlier (5, 7, 15) , with the omission of the 1807value of the spectral density at only two frequencies) , and

contain additional conformational and dynamic information proton pulses during the relaxation period. Instead of decou-
pling during acquisition, the two components of each doubletby virtue of their dependence on the angle w (16) . Although

experiments have recently been proposed which yield data were integrated separately and their intensities added to-
gether to average over both noise and artifacts. It should bethat depend on these rates (16, 17) , a general method of

estimating the rates from these data and assigning error bars understood that these experiments are still under develop-
ment, and at this time the numbers we have derived fromto the estimates has not. Therefore, such experiments provide

an excellent demonstration for the method we have devel- them should be regarded as preliminary.
Both the spectra designed to measure antiphase decay asoped in this paper.

As our sample, we used a 3 mM solution of uniformly well as in-phase build-up were collected at eight time points
equally spaced at intervals of 32 ms. Since the pulse se-15N-enriched oxidized flavodoxin from A. nidulans at pH 6.6

and 303 K. This 169-residue protein yields excellent spectra quences used to measure the in-phase and antiphase coher-
ence differed in length by only about 6 ms, the cross-peakfor its size, and has been the subject of a thorough relaxation
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estimates of the true errors, which make no allowance for
outliers or systematic deviations.

A visual presentation of the results is given in Figs. 2
through 4; a complete table containing all the numerical
values is available from the authors. The following statistics
will be useful in discussing these results:

1. The average of the estimated rates along the sequence,
which is obtained simply by adding up the rates over all
amino acids at which estimates were successfully obtained,
and dividing by the number of such amino acids.

2. The average of the standard deviations in the rates
along the sequence, where these standard deviations were
estimated from the Monte Carlo procedure described above.

3. The standard deviation in the estimated rates from their
average along the sequence, as defined in 1 (above); note
that this has no direct connection to the average standard
deviation defined in 2!FIG. 1. Plots of perturbed negative build-up (circles) and decay (aster-

isks) data, the corresponding smoothed data (pluses and crosses) , the final All rates are given in units of inverse seconds.
fit to the unsmoothed data (solid lines) , and the exact solution (dashed

The average of the estimated in-phase decay rates alonglines) , for a simulated problem using eight time points and a 25% error
the sequence was 8.71, while their average estimated stan-level. The build-up data and curves have been scaled by a factor of four

for easier viewing. dard deviations was 0.83. Most of the larger deviations from
the average are associated with large estimated standard de-
viations (Fig. 2) , and hence are not statistically significant.
While some systematic variations in the rates along the se-intensities measured in the two experiments should be on

very nearly the same scale. After trying several different quence can be seen, they are at most twice the average
estimated standard deviation, and the standard deviation ofpeak-integration procedures, we concluded that none worked

significantly better than simply measuring the height of each the estimated rates from their average along the sequence is
only 1.03. This lack of large sequence variations in the ratescross peak. The heights of both the in-phase and the anti-

phase cross peaks were normalized by dividing them by the is consistent with that observed in independent measure-
height of the antiphase cross peak at the first time point.
Thus the data set qm Å [am , bm]T (1 £ m £ 8) for each
amide group consisted of two sequences of eight normalized
cross-peak heights, where a å »Nx … and b å »2IzNx … .
Twenty-four of the 165 potential pairs of cross peaks (169
residues 0 3 prolines 0 1 N-terminus) could not be mea-
sured because they were either too weak or overlapped with
other cross peaks; these have simply been omitted from the
following discussion and figures.

In addition to simply applying our procedure to each of
these 141 data sets, we also performed a Monte Carlo analy-
sis in order to establish error bars on the estimated rates.
This was done by computing the (unweighted) sum of the
squares of the deviations between the fitted curves and the
(unsmoothed) data, dividing by the number, 16, of data
points, and using the square root of the result as the standard
deviation for 200 independent perturbations of the data by
the addition of Gaussian random numbers. Our procedure
was run on each of these 200 perturbed data sets, and the

FIG. 2. Plots of the in-phase decay rates versus amino acid sequenceRMS deviation from the rates estimated from the unper-
number, in units of inverse seconds. The estimated value of the rate is

turbed data was taken as an estimate of the standard deviation located at the center of each vertical line in the plot, and the length of each
in the rates. Therefore, unlike our simulated test problems, line is equal to twice the estimated standard deviation in its value (see

text) .the errors we report here should be regarded as conservative
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of 3.00 { 0.13; this amino acid is located in a highly acid
and nonconserved loop. The only comparably small cross-
relaxation rates occurred on the epsilon-nitrogen of Trp-66
(not shown). Unusually large rates exceeding 8 were ob-
served in several places, the most convincing of which were
found in another loop at both Gly-26 and Gly-27 (8.08 and
9.66, respectively) . The largest single antiphase decay rate
was also observed at Gly-27 (21.49), and there was a sig-
nificant overall correlation between the antiphase decay rates
and the cross-relaxation rates, with a correlation coefficient
of 0.63. The correlation between the in-phase decay rates
and the cross-relaxation rates was 0.35, while the in-phase
and antiphase rates were essentially uncorrelated at 0.10.

We conclude that, although many of the differences and
trends that may be seen in Figs. 2 through 4 are certainly real
and contain structural and dynamic information, improved
experiments will be needed in order to obtain the rates with
higher precision before their full significance can be as-

FIG. 3. Plots of antiphase decay rates versus amino acid sequence
sessed. Such experiments are currently under developmentnumber. The units and symbols in this plot have the same meanings as in
in our laboratory.Fig. 2.

CONCLUSIONS
ments of T01

1r (18) , and it is therefore not surprising that the
We have described a novel procedure for estimating smallRMS difference between our rates and the T01

1r rates (over
relaxation matrices, and we have shown that it gives goodthe 133 amino acids at which both were available) is only
results on typical 2 1 2 problems. In contrast, this laborato-1.00. The average of the T01

1r rates along the sequence is
ry’s experience has been that a ‘‘naive’’ implementation of9.16, however, which indicates that these latter rates tend to
an approach based on multiexponential fits (as described inbe slightly larger than ours.
the Introduction) is extremely sensitive to errors in simulatedAs was expected from our simulations, our estimated anti-
data, and even to the convergence criterion used to computephase decay rates are substantially more precise, with stan-
the multiexponential fit. More reasonable results can be ob-dard deviations of only 0.44 on the average. It is interesting

to observe that there is considerably more scatter in the
antiphase rates than in the in-phase rates, with a standard
deviation from the average of 1.73 (Fig. 3) . This is consis-
tent with the fact that the antiphase decay rates include con-
tributions from proton–proton dipole–dipole interactions,
which vary with the density of neighboring protons along
the sequence. In this case, the RMS difference with the 133
antiphase decay rates that were also determined indepen-
dently by monoexponential fits with suppression of cross
correlation (18) was 2.61. Much of this difference was due
to the difference in the average rates along the sequence,
which were 15.32 and 17.25 for the rates determined here
and those determined with suppression of cross correlation,
respectively.

The cross-relaxation rates s again appear to be reasonably
well determined by the data, with estimated values and stan-
dard deviations averaging 5.63 and 0.35 along the sequence,
respectively (Fig. 4) . The standard deviation along the se-
quence is 0.99. As before, the larger deviations from the
average tend to be associated with larger estimated standard FIG. 4. Plots of in-phase to antiphase cross-relaxation rates versus
deviations, but not always. One such case occurs at Asn- amino acid sequence number. The units and symbols in this plot have the

same meanings as in Fig. 2.135, which yielded the unusually low cross-relaxation rate

AID JMR 1041 / 6j14$$$467 01-17-97 22:20:07 magas



382 NAJFELD ET AL.

tained through a determined effort to stabilize these fits, for ACKNOWLEDGMENTS
example, by appropriate smoothing and weighting proce-

This work was supported by NIH Grants GM-47467 and GM-38221 anddures, or by regularization functional methods. Comparing
NSF Grant DBI-951185.

our method with all possible variants of methods based on
multiexponential fits is outside the scope of this paper, but REFERENCES
the sensitivity of multiexponential fits to errors in the data

1. L. G. Werbelow, in ‘‘Understanding Chemical Reactivity’’ (R.is well known to researchers in many different fields of
Tycko, Ed.) , Vol. 8, p. 223–263, Kluwer, Dordrecht/Boston/Lon-science and engineering. It is therefore quite certain that
don, 1994.better results will generally be obtained with less effort from

2. J. W. Peng and G. Wagner, in ‘‘Understanding Chemical Reactiv-an approach that fits the exponential of the relaxation matrix
ity’’ (R. Tycko, Ed.) , Vol. 8, p. 373–454, Kluwer, Dordrecht/Boston/

directly as we have done here. This approach is also less London, 1994.
labor intensive than the multiple experiments that are needed 3. A. Kumar and P. K. Madhu, Concepts Magn. Reson. 8, 139–160
to determine the rates one at a time from scalar (multi)expo- (1996).

4. J. Boyd, U. Hommel, and I. D. Campbell, Chem. Phys. Lett. 175,nential fits.
477–481 (1990).Although we have illustrated the approach here for the

5. A. G. Palmer III, N. J. Skelton, W. J. Chazin, P. E. Wright, and M.special case of cross correlation-induced cross relaxation
Rance, Mol. Phys. 75, 699–712 (1992).between the in-phase and antiphase nitrogen coherence of

6. M. Goldman, J. Magn. Reson. 60, 437–452 (1984).
the amide groups of proteins, the method should be readily

7. L. E. Kay, L. K. Nicholson, F. Delaglio, A. Bax, and D. A. Torchia,
generalized to a wide variety of other molecular relaxation J. Magn. Reson. 97, 359–375 (1992).
processes. The method can also be extended, in a straightfor- 8. H. R. Halvorson, in ‘‘Methods in Enzymology’’ (L. Brand and M. L.
ward fashion, to the estimation of larger relaxation matrices Johnson, Eds.) , Vol. 210, p. 54–67, Academic Press, San Diego,

1992.containing many more independent rates, providing that
9. P. J. Rousseeuw and A. M. Leroy, ‘‘Robust Regression & Outliermeasurements at a sufficiently large number of time points

Detection,’’ Wiley, New York, 1987.are available. Alternatively, one could collect data for multi-
10. J.-X. Yang and T. F. Havel, J. Biomol. NMR 3, 355–360 (1993).ple initial conditions, as illustrated, for example, in (19) .
11. I. Najfeld and T. F. Havel, Adv. Appl. Math. 16, 321–375 (1995).In particular, symmetric two-dimensional spectra such as
12. F. R. Gantmacher, ‘‘The Theory of Matrices,’’ Vol. 2, Chelsea,NOESY in principle contain the results of experiments per-

Bronx, New York, 1959.
formed for all possible initial conditions of the form [1, 0, 13. S. Wimperis and G. Bodenhausen, Mol. Phys. 66, 897–919 (1989).
. . . , 0] , [0, 1, . . . , 0] , . . . , [0, 0, . . . , 1] ( i.e., with all 14. R. Brüschweiler and R. R. Ernst, J. Chem. Phys. 96, 1758–1766
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